On MHD jet production in the collapsing and rotating envelope
نویسنده
چکیده
We present results from axisymmetric, time-dependent magnetohydrodynamical (MHD) simulations of a gaseous envelope collapsing onto a black hole (BH). We consider gas with so small angular momentum that, if not for the effects of MHD, the flow would accrete directly onto a BH. We find that after an initial transient, the flow settles into a configuration with four components: (i) a radial equatorial inflow, (ii) a bipolar outflow, (iii) polar funnel outflow, and (iv) polar funnel inflow. We focus our analysis on the second flow component which is a simple yet robust example of a well-organized inflow/outflow solution to the problem of MHD jet formation. The jet is heavy, highly magnetized, and driven by magnetic and centrifugal forces. A significant fraction of the total energy in the jet is carried out by a large scale magnetic field. We review previous simulations, where specific angular momentum was higher than that assumed here, and conclude that our bipolar outflow develops for a wide range of the properties of the flow near the equator and near the poles. Future work on such a simple inflow/outflow solution will help to pinpoint the key elements of real jets/outflows as well as help to interpret much more complex simulations aimed at studying jet formation and collapse of magnetized envelopes. Subject headings: accretion, accretion disks – methods: numerical – MHD – stars: winds, outflows
منابع مشابه
Magneto-Hydrodynamics of Population III Star Formation
Jet driving and fragmentation process in collapsing primordial cloud are studied using three-dimensional MHD nested grid simulations. Starting from a rotating magnetized spherical cloud with the number density of nc ≃ 10 cm, we follow the evolution of the cloud up to the stellar density nc ≃ 10 cm. We calculate 36 models parameterizing the initial magnetic and rotational energies (γ0, β0). In t...
متن کاملNanofluid Condensation and MHD Flow Modeling over Rotating Plates Using Least Square Method (LSM)
In this study, nanofluid condensation and MHD flow analysis over an inclined and rotating plate are investigated respectively using Least Square Method (LSM) and numerical method. After presenting the governing equations and solving them by LSM, the accuracy of results is examined by the fourth order Runge-Kutta numerical method. For condensation, modeling results show that the condensate f...
متن کاملDesigning and Manufacturing the Multiple Jets Simulator and Experimental Investigation of the Multiple Jets in Crossflow
Designing and manufacturing the multiple jets simulator and experimental investigation of the multiple jets in crossflow at low velocity ratios have been studied Together with design and build a low-speed wind tunnel. A specific rake is used to determine the flow field pressure and changes in static pressure measured by pressure taps in the near field of the jets. There are generally three regi...
متن کاملDesigning and Manufacturing the Multiple Jets Simulator and Experimental Investigation of the Multiple Jets in Crossflow
Designing and manufacturing the multiple jets simulator and experimental investigation of the multiple jets in crossflow at low velocity ratios have been studied Together with design and build a low-speed wind tunnel. A specific rake is used to determine the flow field pressure and changes in static pressure measured by pressure taps in the near field of the jets. There are generally three regi...
متن کاملMagnetic Fields and Rotations of Protostars
The evolution of the magnetic field and angular momentum in the collapsing cloud core is studied using three-dimensional resistive MHD nested grid simulations. Starting with a Bonnor-Ebert isothermal cloud rotating in a uniform magnetic field, we calculate the cloud evolution from the molecular cloud core (nc ≃ 10 4 cm, r = 4.6× 10 AU) to the stellar core (nc ≃ 10 22 cm, r ∼ 1R⊙), where nc and ...
متن کامل